Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17942, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864035

RESUMEN

Antipathogenic drugs are a potential source of therapeutics, particularly following the emergence of multiple drug-resistant pathogenic microorganisms in the last decade. The inhibition of quorum sensing (QS) is an advanced antipathogenic approach for suppression of bacterial virulence and dissemination. This study aimed to investigate the inhibitory effect of some Egyptian medicinal plants on the QS signaling system of Pseudomonas aeruginosa. Among the tested plants, Mangifera indica exhibited the highest quorum sensing inhibition (QSI) activity against Chromobacterium violaceum ATCC 12472. Four pure compounds were extracted and identified; of these, methyl gallate (MG) showed the most potent QSI. MG had a minimum inhibitory concentration (MIC) of 512 g/mL against P. aeruginosa strains PAO1, PA14, Pa21, Pa22, Pa23, Pa24, and PAO-JP2. The virulence factors of PAO1, PA14, Pa21, Pa22, Pa23, and Pa24 were significantly inhibited by MG at 1/4 and 1/2 sub-MICs without affecting bacterial viability. Computational insights were performed by docking the MG compound on the LasR receptor, and the QSI behavior of MG was found to be mediated by three hydrogen bonds: Trp60, Arg61, and Thr75. This study indicates the importance of M. indica and MG in the inhibition and modulation of QS and QS-related virulence factors in P. aeruginosa.


Asunto(s)
Mangifera , Plantas Medicinales , Percepción de Quorum , Pseudomonas aeruginosa , Factores de Virulencia/farmacología , Antibacterianos/farmacología , Biopelículas , Chromobacterium
2.
Cell Commun Signal ; 21(1): 133, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316831

RESUMEN

Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract.


Asunto(s)
Antiinfecciosos , Percepción de Quorum , Humanos , Comunicación Celular , Ciclo Celular
3.
World J Microbiol Biotechnol ; 38(9): 156, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798919

RESUMEN

The number of deaths caused by multidrug-resistant Pseudomonas aeruginosa has risen in the recent decade. The development of quorum sensing inhibition (QSI) is a promising approach for controlling Pseudomonas infection. Therefore, this study mainly aimed to investigate how a plant-source material inhibits QSI to produce an antipathogenic effect for fighting microbial infections. The QSI effect of Trigonella stellata was assessed by using Chromobacterium violaceum ATCC 12472 reporter strain. Trigonella stellata exhibited high QSI activity, and an ethanolic extract of T. stellata was prepared for phytochemical isolation of the most active QSI compound. Nine pure compounds were isolated and identified as kaempferitrin (1), soyasaponin I (2), ß-sitosterol-3-O-glucoside (3), dihydromelilotoside (4), astrasikokioside I (5), methyl dihydromelilotoside (6), (3R, 4S)-4, 2', 4'-trihydroxy-7-methoxy-4'-O-ß-D-glucopyranosylisoflavan (7), (3S, 4R)-4, 2', 4'-trihydroxy-7-methoxyisoflavan (8, TMF), and (+)-D-pinitol (9). These compounds were screened against C. violaceum ATCC 12472, and TMF exhibited a potent QSI. The effect of TMF at sub-minimum inhibitory concentrations (MICs) was assessed against P. aeruginosa virulence factors, including biofilm, pyocyanin formation protease and hemolysin activity. TMF induced significant elimination of QS-associated virulence behavior. In addition, TMF at sub-MICs significantly reduced the relative expression of lasI, lasR, rhlI, and rhlR compared with that in untreated cells. Furthermore, molecular docking was performed to predict structural basis of the QSI activity of TMF. The study demonstrated the importance of T. stellata as a signal modulator and inhibitor of P. aeruginosa pathogenesis.


Asunto(s)
Percepción de Quorum , Trigonella , Antibacterianos/metabolismo , Biopelículas , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa , Factores de Virulencia/metabolismo
4.
Front Cell Infect Microbiol ; 11: 716789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660340

RESUMEN

The last decade has witnessed a massive increase in the rate of mortalities caused by multidrug-resistant Pseudomonas aeruginosa. Therefore, developing new strategies to control virulence factors and pathogenicity has received much attention. One of these strategies is quorum sensing inhibition (QSI) which was developed to control Pseudomonas infection. This study aims to validate the effect of one of the most used ß-lactam antibiotics; cefoperazone (CFP) and its metallic-derivatives on quorum sensing (QS) and virulence factors of P. aeruginosa. Assessment of quorum sensing inhibitory activity of CFP, cefoperazone Iron complex (CFPF) and cefoperazone Cobalt complex (CFPC) was performed by using reporter strain Chromobacterium violaceum ATCC 12472. Minimal inhibitory concentration (MIC) was carried out by the microbroth dilution method. The influence of sub-MICs (1/4 and 1/2 MICs) of CFP, CFPF and CFPC on virulence factors of P. aeruginosa was evaluated. Data was confirmed on the molecular level by RT-PCR. Also, molecular docking analysis was conducted to figure out the possible mechanisms of QSI. CFP, CFPF, and CFPC inhibited violacein pigment production of C. violaceum ATCC 12472. Sub-MICs of CFP (128- 256 µg/mL), and significantly low concentrations of CFPC (0.5- 16 µg/mL) and CFPF (0.5- 64 µg/mL) reduced the production of QS related virulence factors such as pyocyanin, protease, hemolysin and eliminated biofilm assembly by P. aeruginosa standard strains PAO1 and PA14, and P. aeruginosa clinical isolates Ps1, Ps2, and Ps3, without affecting bacterial viability. In addition, CFP, CFPF, and CFPC significantly reduced the expression of lasI and rhlI genes. The molecular docking analysis elucidated that the QS inhibitory effect was possibly caused by the interaction with QS receptors. Both CFPF and CFPC interacted strongly with LasI, LasR and PqsR receptors with a much high ICM scores compared to CFP that could be the cause of elimination of natural ligand binding. Therefore, CFPC and CFPF are potent inhibitors of quorum sensing signaling and virulence factors of P. aeruginosa.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Antibacterianos/farmacología , Biopelículas , Cefoperazona/farmacología , Chromobacterium , Simulación del Acoplamiento Molecular , Factores de Virulencia/farmacología
5.
J Gen Appl Microbiol ; 51(3): 151-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16107752

RESUMEN

This is the first report on the degradation of poly(3-hydroxybutyrate) (PHB), and its copolymers poly(3-hydroxyvalerate) P(3HB-co-10-20% HV) by Nocardiopsis aegyptia, a new species isolated from marine seashore sediments. The strain excreted an extracellular PHB depolymerase and grew efficiently on PHB or its copolymers as the sole carbon sources. The degradation activity was detectable by the formation of a transparent clearing zone around the colony on an agar Petri plate after 25 days, or a clearing depth under the colony in test tubes within 3 weeks. The previous techniques proved that the bacterium was able to assimilate the monomeric components of the shorter alkyl groups of the polymers. Nocardiopsis aegyptia hydrolyzed copolymers 10-20% PHBV more rapidly than the homopolymer PHB. The bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate), and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). The samples were degraded at the surface and proceeded to the inner part of the materials. Clear morphological alterations of the polymers were noticed, indicating the degradative capability of the bacterium. Plackett-Burman statistical experimental design has been employed to optimize culture conditions for maximal enzyme activity. The main factors that had significant positive effects on PHB depolymerase activity of Nocardiopsis aegyptia were sodium gluconate, volume of medium/flask and age of inoculum. On the other hand, MgSO4.7H2O, KH2PO4, K2HPO4 and NH4NO3 exhibited negative effects. Under optimized culture conditions, the highest activity (0.664 U/mg protein) was achieved in a medium predicted to be near optimum containing (in g/L): PHB, 0.5; C6H11O7Na, 7.5; MgSO4.7H2O, 0.35; K2HPO4, 0.35; NH4NO3, 0.5; KH2PO4, 0.35; malt extract, 0.5 and prepared with 50% seawater. The medium was inoculated with 1% (v/v) spore suspension of 7 days old culture. Complete clarity of the medium was achieved after 3 days at 30 degrees C.


Asunto(s)
Actinomycetales/enzimología , Actinomycetales/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proyectos de Investigación , Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Técnicas Bacteriológicas , Biodegradación Ambiental , Medios de Cultivo , Microscopía Electrónica de Rastreo , Agua de Mar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...